Showing posts sorted by date for query gps-global-positioning-system. Sort by relevance Show all posts
Showing posts sorted by date for query gps-global-positioning-system. Sort by relevance Show all posts

Fmc | Flight Management Computer

Sistem komputer yg memakai basis data yg besar untuk memungkinkan memprogram rute penerbangan serta dimasukkan ke dalam sistem melalui pemuat data. Sistem ini terus memperbarui posisi pesawat terbang dengan mengacu pada alat bantu navigasi yg ada. Alat bantu yg paling sempurna dipilih secara otomatis dikala pembaruan info berlangsung.


Pesawat komersial serta bisnis modern disokong dengan Electronic Flight Instruments System (EFIS), menggantikan sistem konvensional serta display dek penerbangan. Dengan menerapkan Flight Management System (FMS) merupakan sistim Navigasi, Kinerja serta Operasi.


Flight Management System (FMS)
  ➤  Manajemen Penerbangan Komputer (FMC)
  ➤  Automatic Flight Control System (AFCS ) / Automatic Flight Guisertace System (AFGS)
  ➤  Sistem Navigasi Pesawat Terbang;
  ➤  Sistem Instrumen Penerbangan Elektronik (EFIS) / Instrumentasi Elektromekanik.

Sistim yg didesain untuk menyediakan data virtual serta harmoni operasional antara elemen tertutup serta terbuka yg terkait dengan penerbangan dari awal serta mesin pra-mesin, mendarat serta mematikan mesin.


Sistem Navigasi - Paket terpadu yg menghitung terus posisi pesawat.
Termasuk input.
  ➽  Multi-FunctionControl Display Unit (MCDU)
  ➽  Inertial Reference System (IRS)
  ➽  Global Positioning System (GPS)
  ➽  Satellite-Based Augmentation System (SBAS)
Selain receiver alat bantu berbasis darat.
  ➽  Non-Directional Beacon (NDB)
  ➽  Automatic Directional Finder (ADF)
  ➽  Very High Frequency Omnidirectional Range (VOR)
  ➽  Distance Measurement Equipment (DME)
  ➽  Instrument Landing System (ILS)

Dalam EFIS, tampilan input navigasi ididasarkan pada
  ➽  Attitude and Heading Reference System (AHRS).
  ➽  Air Data Inertial Reference Unit (ADIRU)




AFCS atau AFGS mendapatkan info dari sistem pesawat. Tergantung keadaan pesawat di bawah kendali Otomatis atau Manual,  Mode AFCS yg dibentuk oleh pilot akan secara otomatis bergerak serta mengendalikan permukaan kontrol pesawat atau menampilkan perintah Flight Director biar pilot mengikuti untuk mencapai status yg diinginkan.

Tampilan Status pesawat pada Electronic Flight Instruments System (EFIS) atau Conventiomal serta merupakan dampak pengendalian pesawat FMS pada prinsipnya terlihat.

Flight Management Computer

Diperkenalkan pada B737-200 Feb 1979 sebagai Performance Data Computer System (PDCS), Flight Management Computer (FMC) merupakan langkah maju teknologi yg besar. Smiths Industries (Lear Seigler) memasok semua FMC yg terpasang pada 737.

Pada B737-300 tahun 1984. Membuat database serta fungsi performanya tetap menambahkan Database Navigasi yg berinteraksi dengan Autopilot & Flight Director, Autothrottle serta IRS. Sistem terpadu dikenal Flight Management System (FMS).

FMC mempunyai Database Navigasi 96k Word, ( 1Word = 2Byte serta 1Byte = 16Bit Prosesor 16 bit). Menso 192k Word tahun 1988, 288 k Word tahun 1990, 1 Mega tahun 1992, kini mempunyai  4 Mega untuk 737-NG dengan Update 10.7.

Database Navigasi dipakai untuk menyimpan info rute yg autopilot akan terbang dikala berada dalam mode LNAV. Bila diberi data menyerupai ZFW & MACTOW, diperlukan masukan dari unit penjumlahan materi bakar untuk memberi bobot kotor serta berkecepatan terbaik untuk Pendakian, Perjalaan, Penurunan, Holding, Approach, Driftdown dll.

Kecepatan bisa diterbangkan oleh autopilot & Autothrottle dalam mode VNAV. Akan menghitung posisi pesawat menurut masukan dari pemutakhiran posisi IRS, GPS, Radio.

FMC Model 2907C1 - Memiliki Prosesor Motorola 68040 berjalan pada berkecepatan bus 60MHz (berkecepatan bus 30Mhz), dengan RAM statis 4Mb serta 32Mb untuk Program & Database.


FMC mempunyai 3 Database:
  ➽  Perangkat Lunak (OP PROGRAM)
  ➽  Basis Data Model / Engine (MEDB)
  ➽  Basis Data Navigasi (NDB)
Kesemuanya tersimpan pada kartu memori EEPROM.
Database ini semua bisa diperbarui melalui Data Loader.

MEDB  - Menyimpan semua data performa untuk berkecepatan V, berkecepatan min & max dalam pendakian, petampilanan & penurunan, konsumsi materi bakar, kemampuan ketinggian, dll.

NDB terdiri dari Permanen
  ➽  Supplemental (SUPP)
  ➽  Temporary (REF).
Database permanen tidak sanggup diubah oleh awak kapal.

Ada empat jenis data:
  ➽  Waypoint,
  ➽  Navaid,
  ➽  Airport and
  ➽  Runway
Data Pacu hanya dalam Database Permanen.

Pilihan untuk mempunyai hanya dibawa oleh operator ke wilayah udara MNPS (Oseanik). FMS didefinisikan mampu Area Navigasi 4 Dimensi (Baris Lintang, Bujur, Ketinggian & Waktu) sambil mengoptimalkan performa untuk mencapai penerbangan paling ekonomis.

Kapasitas Navigasi Database (NDB) menso duduk masalah serta menso Perhatian Implementasi Navigasi Basis Kinerja (PBN) alasannya yaitu banyak Prosedur Generasi berikutnya (NextGen) sesertag dikembangkan serta FMC tidak lagi mempunyai kapasitas untuk penambahan NDB,





Fans | Future Air Navigation System

Sistem Avionik yg menyediakan Komunikasi Data Link eksklusif antara Pilot serta pengendali kemudian lintas udara. Komunikasi meliputi kelonggaran kontrol kemudian lintas udara, Permintaan pilot serta Pelaporan posisi.



FANS-B Melengkapi pesawat Airbus A320.
  ➤  Air Traffic Services Unit (ATSU)
  ➤  Radio VHF Data Link (VDR3) di rak Avionik
  ➤  Dua Data Link Control and Display Units (DCDU) di Kokpit

FANS Interface
CDU Fuctions (Forward)
  ➽  FMC - Flight Management Computer
  ➽  ACARS - Aircraft Communications Addressing and Reporting System
  ➽  ATC - Air Traffic Management Datalink
  ➽  SATCOM - Satellite Communications
  ➽  CMC - Central Maintenance Computer
  ➽  AOC - Air Operator Certificate

CDU Fuctions (Aft)
  ➽  ACMS - Aircraft Condition Monitoring System
  ➽  ACARS - Company Datalink
  ➽  SATCOM - Satellite Communications
  ➽  CMC - Central Maintenance Computer

Memungkinkan awak pesawat membaca serta menjawab pesan
Controller Pilot Data Link Communications (CPDLC) yg diterima dari ground.

Sistem Pengendalian Lalu Lintas Udara dunia masih memakai komponen yg didefinisikan tahun 1940an sehabis pertemuan 1944 di Chicago pembentukan Organisasi Penerbangan Sipil Internasional (ICAO). Sistem ATC tradisional memakai Sistem Radio Analog untuk Komunikasi, Communications, Navigation and Surveillance (CNS).

Upaya meningkatkan Komunikasi Penerbangan, Navigasi, Pengawasan, serta Manajemen Lalu Lintas Udara, Standar ICAO untuk sistem masa depan diciptakan, sistem terpadu Future Air Navigation System (FANS) serta memungkinkan pengendali untuk pemantauan melalui Penggunaan peningkatan Otomasi serta Navigasi berbasis Satelit.

Tahun 1983, ICAO membentuk komite khusus untuk Sistem Navigasi Udara Masa Depan (FANS), yg bertugas menyebarkan konsep operasional untuk masa depan Air Traffic Management (ATM). Laporan FANS tahun 1988 serta meletakkan dasar untuk seni administrasi masa depan untuk ATM melalui CNS Digital memakai Satelit serta Data Link


Boeing mengumumkan unit FANS Generasi Pertama (FANS-1).
Didasarkan teknis ICAO untuk
 ➤  Automatic Dependent Surveillance (ADS)
 ➤  Controller Pilot Data Link Communications (CPDLC),
Sebagai paket perangkat lunak pada komputer administrasi penerbangan Boeing 747-400.
Menggunakan komunikasi ACARS berbasis Satelit (Inmarsat Data-2 Service) serta ditargetkan beroperasi di wilayah Samudera Pasifik Selatan.

FANS-A dikembangkan oleh Airbus untuk A340 serta A330 serta Boeing untuk Boeing 777 serta 767. Dikenal sebagai FANS-1 / A. Standar menggambarkan pengoperasian
 ➤  ARINC 622
 ➤  EUROCAE ED-100 / RTCA DO-258

Standar ICAO untuk CPDLC memakai Aeronautical Telecommunications Network (ATN) lebih disukai untuk wilayah udara kontinental serta ketika ini sesertag dipakai di Wilayah Udara Eropa yg utama oleh EUROCONTROL di bawah Program LINK2000 +. Wajib mengikuti sesuai ICAO menso Aturan Pelaksana (untuk pesawat terbang yg terbang di atas FL280)


Vendor menyediakan unit sesuai ICAO ATN / CPDLC.
➤  Produk untuk Airbus A320 dikenal sebagai FANS-B.
➤  Rockwell Collins, Honeywell serta Spectralux untuk Boeing, (B737, B767 serta B787)

Standar utama menjelaskan pengoperasian sesuai  ICAO
 ➤  Manual Teknis ICAO
 ➤  ICAO Doc 9705
 ➤  ICAO Doc 9896
 ➤  Eurocae ED-110B / RTCA DO-280B
 ➤  Eurocae ED-120 / RTCA DO-290

DokumenICAO
 ➤  Global Operational Data Link Document (GOLD)
 ➤  Fans Operating Manual (FOM)

Surat Edaran FAA untuk panduan Instalasi FANS
 ➤  AC 120-70B - Memberikan panduan untuk otorisasi operasional
 ➤  AC 20-140A - Memberikan panduan untuk persetujuan desain


Manfaat penerpan FANS
 ➤  Pengurangan jumlah frekuensi yg diharapkan untuk komunikasi pesawat ATC
 ➤  Pengurangan separuh minimum antar pesawat secara Longitudinal serta Lateral

Manfaat FANS
Meliputi pengurangan waktu bakar serta waktu terbang melalui perutean langsung, serta kemampuan muatan yg meningkat untuk penerbangan dengan muatan lepas landas. Jika FANS diimplementasikan, Akan sanggup memanfaatkan beberapa perbaikan yg dibutuhkan:
  1.  Mengurangi pemisahan antara pesawat terbang.
  2.  Perubahan rute yg lebih efisien.
  3.  Komunikasi satelit.
  4.  Tidak ada ketinggian yg hilang ketika melintas trek.
  5.  Routing lebih langsung.

Pesawat harus disokong beberapa fungsi untuk mendukung penerapan FANS
"Status FANS 1" 
 ➤  Airline Operational Control (AOC) Data Link.
 ➤  Automatic Dependent Surveillance (ADS)
 ➤  Air Traffic Control (ATC) Data Link.
 ➤  Global Positioning System (GPS) Integration.
 ➤  Required Navigational Performance (RNP).
 ➤  Required Time of Arrival (RTA)


Ringkasan

FANS - Merupakan solusi potensial untuk menumbuhkan keperluan akan sistem navigasi udara dengan kemampuan lebih besar. Jika semua elemen sistem diimplementasikan, operator sanggup mengharapkan manfaat menyerupai pengurangan waktu bakar serta waktu bakar serta muatan serta muatan yg meningkat.

Perbaikan operasi penerbangan yg mungkin terso akhir FANS meliputi pengurangan ruang antara pesawat terbang, perubahan rute yg lebih efisien menurut model angin yg diperbarui, komunikasi satelit, tidak ada kehilangan ketinggian ketika melintasi jalur, serta lebih banyak rute langsung.

[  Future Air Navigation System (FANS)  (8) - Clay Lacy Aviation
[  (FANS) Future Air Navigation System  (7) - HoneyWell
[  Data Comm Systems with FANS 1/A+  (8) - Universal Avionic
[  PilotView Crew Information System  (4) - Esterline
[  AIRBUS FANS Update and Future  (19) - AIRBUS



Structure Of Flight Management System

Pilot-in-Command - Penerbangan memakai peralatan kontrol penerbangan dalam sejumlah besar. Informasi penting untuk pengendalian penerbangan serta keamanan kemudian lintas udara. Di udara pada tahap yg berbeda dari penerbangan, Pilot-in-Command memerlukan banyak sekali Informasi Aeronautika dari Sistem Navigasi yg berbeda secara mendasar.



Misalnya
Saat pendaratan, warta terpenting dari sistem pendaratan wacana penyimpangan dari jalur meluncur, serta selama panduan penerbangan En-Route oleh Beacon Navigasi Terestrial serta Navigasi Satelit. Sistem navigasi modern terlalu sulit untuk dipakai (Pilot harus meluangkan banyak waktu untuk menggunakannya).


Flight Management System (FMS) - Sistem komputerisasi yg membantu pilot untuk memantau serta mengelola sistem pesawat terbang untuk mendapat performa penerbangan yg aman. FMS melaksanakan semua operasi rutin teknis dengan sistem Pesawat yg dipakai dalam penerbangan, Memungkinkan pilot untuk meluangkan lebih banyak waktu untuk mengendalikan penerbangan, daripada menyiapkan sistem.




















FMS - Komponen Fundamental dari Avionik pesawat modern. Sistem Komputer Khusus yg mengotomatisasi banyak sekali macam kiprah penerbangan, mengurangi beban kerja awak pesawat hingga pesawat modern tidak ada Insinyur Penerbangan atau Navigator.

FMS - Terdiri dari
 ➤ FMC (Flight Management Computer)
 ➤ MCDU (Multi-FunctionControl Display Unit)

EFIS (Electronic Flight Instrument System)
Informasi Flight Management System






































Navigation Aids

 ➤ ADF (Automatic Directional Finder)
 ➤ VOR (VHF Omnidirectional Range)
 ➤ DME (Distance Measurement Equipment)
 ➤ LRRA (Low Range Radio Altimeter)

Sattelite Navigation

 ➤ GPS (Global Positioning System)
 ➤ GNSS (Global Navigation Satellite Systems)
 ➤ WAAS (Wide Area Augmentation System)
 ➤ GBAS (Ground Based Augmentation System)
 ➤ SBAS (Satellite-Based Augmentation System)

 ➤ INS (Initial Navigation System)
 ➤ TCAS (Traffic Collision and Avoisertace System)
 ➤ GPWS (Ground Proximity and Warning System)
 ➤ SATCOM (Satellite Communications)
 ➤ CPDLC 
(Controller Pilot Data Link Communications)

Informasi lain FMS
 ➤ Lintasan jalur luncur yg disediakan oleh sistem pendaratan.
 ➤ Ketinggian, parameter berkecepatan dari sistem sinyal udara;
 ➤ Jumlah materi bakar dari sensor serta waktu yg tepat.

Data dibutuhkan untuk memantau penerbangan, melaksanakan perhitungan serta menampilkannya dalam format yg sempurna untuk memandu penerbangan utama serta tampilan Navigasi.

FMS Menyediakan
 ➤ Menampilkan warta aeronautika yg diperlukan
       Untuk uji coba dalam fase penerbangan tertentu melalui indikasi
 ➤ Mengubah frekuensi radio peralatan navigasi serta komunikasi
       Yang terhubung melalui unit kontrol peralatan komunikasi;
 ➤ Penerbitan penyimpangan dari nilai lintasan yg diberikan untuk uji coba otomatis
      Dan sistem warta untuk pengendalian mesin.




Profiles Of Flight Management System

Fungsi Flight Management System (FMS) yg paling penting yakni indikasi penerbangan serta Informasi Navigasi melalui sistem indikasi elektronik. Selama pilot penerbangan membutuhkan aneka macam info penerbangan, maka FMS mengelompokkan data ini sesuai dengan fase penerbangan serta melambangkannya pada tampilan Pilot serta Navigational.


Berbagai indikasi dalam FMS. Dari model yg berbeda memperlihatkan info secara berbeda, menurut pada jumlah info yg tersimpan dalam database serta spesifikasi fungsional yg berbeda. Tidak hanya nama rezim penerbangan yg berbeda dalam model peralatan FMS yg berbeda, namun jumlah indikasi pun bervariasi.


Indikasi yg dipakai pesawat AIRBUS, di FMS Thales -
  ➤  Pre-Flight
  ➤  Take-Off
  ➤  Climb
  ➤  Cruise
  ➤  Descent
  ➤  Approach
  ➤  Landing
⏩⏩ Done


Menentukan Posisi

Tujuan utama FMS - Menentukan posisi pesawat terbang serta menilai keakuratan informasi. FMS dasar memakai satu Sensor serta Global Positioning System (GPS) untuk menghitung posisi. FMS modern memakai beberapa sensor, termasuk Very High Frequency Omni-Range (VOR), untuk mendapat serta memvalidasi info yg tepat.

SENSOR Terintegrasi meliputi:
  ➤  Kualitas penerbangan Penerima GPS sebagai sensor utama mengingat standar performa
        serta ketepatan tinggi mereka
  ➤  Alat bantu radio, yg dibangun untuk navigasi pesawat terbang,
        sebagai sensor sekunder, termasuk:
     ➥  Perangkat pemindaian DME secara bersamaan memilih jarak referensi
           dari lima stasiun DME unik untuk menghitung posisi setiap 10 detik.
     ➥  Bantalan suplai VOR. Posisi pesawat ditentukan dengan memakai dua stasiun VOR,
           meski dengan akurasi terbatas.
     ➥  Sistem rujukan inersia (IRS) memanfaatkan gyros laser cincin serta akselerometer
           untuk memilih posisi pesawat terbang.

Perangkat ini mengatakan pembacaan yg sangat akurat yg tidak bergantung pada sumber luar manapun. Bantalan "Triple Mixed IRS" dihitung dengan memakai rata-rata tertimbang dari tiga Inertial Reference System (IRS) independen.

FMS mengecoh sensor untuk menghasilkan posisi pesawat yg sempurna serta akurat. Actual Navigation Performance (ANP), yg dinyatakan dalam mil laut, berlaku untuk performa sistem navigasi dikala ini. Kinerja navigasi yg dibutuhkan (RNP), yg mengacu pada keakuratan peralatan Navigasi, diharapkan untuk memperkirakan posisi yg tepat.

Nilai ANP yg lebih kecil memperlihatkan posisi FMS yg lebih akurat serta nilai ANP pesawat terbang harus lebih rendah dari Required Navigation Performance (RNP) untuk beroperasi di ruang udara tertentu.


FMS menghitung rute menurut rencana penerbangan serta posisi pesawat. Pilot mengikuti rute secara Manual atau Autopilot. Modus rencana penerbangan Lateral sebagai LNAV serta menampilkan sasaran berkecepatan serta pitch atau ketinggian. Modus rencana penerbangan Vertikal disebut VNAV mentransmisikan perintah kemudi ke Autopilot.

Navigasi Vertikal

Pesawat modern disokong dengan sistem VNAV yg canggih untuk memperkirakan serta optimalisasi jalur vertikal pesawat yg akurat. Sistem ini memperlihatkan panduan untuk mengendalikan Sumbu serta Throttle Pitch. FMS memerlukan rincian model penerbangan serta mesin untuk membangun jalur Vertikal menurut rencana penerbangan Lateral.

FMS membuat Profil Vertikal dalam mode pra-penerbangan memakai berat pesawat awal, berat materi bakar, serta Variabel lainnya. Jalan vertikal dimulai dengan mendaki ke ketinggian jelajah. Integrasi VNAV, mengarah pada penghematan materi bakar dalam perjalanan serta penurunan.

Saat materi bakar terbakar, berat pesawat terbang ringan memungkinkannya terbang di daerah yg lebih tinggi sehingga lebih ekonomis materi bakar. Sistem memilih berkecepatan dengan tingkat pembakaran materi bakar terendah, dikenal dengan berkecepatan ECON.

FMS memakai Required Time of Arrival (RTA) untuk mencapai kedatangan di titik jalan tertentu, yg membantu jadwal waktu kedatangan. VNAV menghitung Top Of Descent point (TOD), di mana penurunan yg efisien dimulai. Berdasarkan jalur peturunan yg telah ditentukan, pesawat mengubah sesuai keperluan untuk mempertahankan jalur.

VERTICAL serta LATERAL

Standard

SAE AIR4653     - Tinjauan sistem administrasi penerbangan
FAA AC 25-15    - Persetujuan sistem administrasi penerbangan dalam kategori
                                 Transportasi pesawat terbang
SAE ARP94910 - Spesifikasi panduan untuk sistem administrasi kendaraan kedirgantaraan







En-Route Navigation Procedure

Prosedur Point to Point - Membuat tumpang tindih antara dua titik arah. Pesawat bergerak sepanjang Rute dari ujung Sebelumnya ke lokasi ketika ini, dengan mempertimbang kan pos tertentu pada tamat mekanisme serta memutuskan pesawat ke pos akhir.

Metodologi Prosedur En-Route - Metodologi yg dipakai oleh Aviator ketika menghitung Rute antara Prosedur, Seperti melaksanakan perjalanan dari tamat mekanisme sebelumnya ke awal.




Jika pesawat tidak sanggup mencapai ketinggian yg ditetapkan (Dengan memakai ketinggian jelajah Default atau dengan memilih ketinggian), pengguna sanggup memilih apakah pesawat akan berhenti di daerah tertinggi atau terendah yg sanggup dicapai, tergantung pada apakah naik atau turun, atau Jika akan melakukan Leveling-Off untuk mencapai ketinggian yg diinginkan;


Global Navigation Satellite Systems (GNSS) - Mengatasi banyak kekurangan di infrastruktur kemudian lintas udara ketika ini berkat penentuan posisi cuaca yg akurat serta terus menerus. Penerbangan En-Route, ketersediaan GNSS akan memastikan ketahanan yg tinggi melalui Redunsertasi serta Keandalan layanan yg tinggi.

Akurasi serta Integritas layanan yg lebih tinggi akan memungkinkan pemisahan pesawat di wilayah udara yg padat, Untuk mengatasi pertumbuhan kemudian lintas serta pelanggaran wilayah udara. GNSS akan dipakai dalam fase penerbangan En-Route pesawat komersial.


Sistem Navigasi En-Route

Alat Navigasi berbasis darat konvensional ( VOR, DME, NDB, ILS ), membatasi rute serta mekanisme ke lokasi fisik. Sistem berbasis Ground Safety dipakai di industri penerbangan, serta mekanisme Navigasi Visual, mereka tidak mempunyai Fleksibilitas untuk melaksanakan operasi Point-to-Point.

Ke depan, Global Navigation Satellite Systems (GNSS) Akan menso sumber utama Data Posisi untuk Operasi Rute serta Terminal. Informasi GNSS digunakan dalam Perjalanan serta Positioning Area Terminal Control, untuk memilih Posisi Horizontal pesawat terbang.


Informasi Global Navigation Satellite Systems (GNSS) akan diperoleh dari Sistem Navigasi Global serta sistem augmentasi seperti:
  ➤  GPS L1 serta L5
  ➤  Galileo
  ➤  Glonass
  ➤  SBAS (EGNOS, WAAS, GAGAN, MSAS)

Solusi GNSS sanggup dikombinasikan dengan Bantuan Terestrial, (DME, ILS serta MLS) serta Navigasi On-Board, menyerupai Sistem Navigasi Inersia. Informasi GNSS tidak dipakai dalam pengelolaan lintasan Rute serta Terminal Control Area (TCA).

Karakterisasi Aplikasi

Fase perjalanan terdiri dari selesainya pendakian awal melalui ketinggian serta penyelesaian penurunan yg terkendali ke pendekatan awal. Sistem Navigasi yg dipakai dalam tahap perjalanan harus sesuai dengan sistem pendekatan serta sistem pendaratan.

Aplikasi navigasi pada rute tertentu atau dalam wilayah udara tertentu harus didefinisikan secara terperinci serta ringkas. Hal ini untuk memastikan bahwa awak pesawat serta pengendali Air Traffic Control (ATC) mengetahui kapabilitas sistem Navigasi on-board Area Navigation (RNAV) untuk memilih apakah performa sistem RNAV sesuai.


RNAV didefinisikan sebagai Metode Navigasi yg memungkinkan operasi pesawat terbang pada jalur yg diinginkan dalam cakupan Sinyal Navigasi yg ditunjukkan oleh stasiun atau dalam batas kemampuan sistem yg terkandung sendiri, atau kombinasi dari keduanya.

Peningkatan efisiensi operasional yg berasal dari penerapan teknik Nnavigasi Area (RNAV) telah menghasilkan pengembangan aplikasi navigasi.

Integritas dalam Navigasi En-Route

Ada beberapa cara untuk memastikan integritas. Layanan Integritas Sistem GNSS yg sesuai dengan ICAO sanggup diberikan oleh tiga sistem pembesaran yg dinormalisasi yg dikenal dengan
  ➤  ABAS (Airborne Based Augmentation System)
  ➤  GBAS (Sistem Augmentation Berbasis Lapangan)
  ➤  SBAS (Satellite Based Augmentation System)

Selain layanan integritas, GBAS serta SBAS pun memperlihatkan koreksi diferensial untuk memperbaiki ketepatan di area terlarang di sekitar stasiun rujukan tunggal untuk GBAS serta di wilayah yg luas yg didefinisikan oleh jaringan Stasiun Referensi untuk SBAS.


Karakteristik Aplikasi perjalanan GNSS

Karakteristik peralatan penerbangan sangat bervariasi dari perangkat genggam ke dek penerbangan yg terpasang pada sistem terintegrasi penuh. Di pesawat komersial, peralatan dipasang secara permanen di lokasi yg telah diuji serta disetujui dengan pasokan listrik yg sesuai, serta terintegrasi sepenuhnya dengan sistem penerbangan lainnya.